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Abstract—Clustering coefficient is one of the most important
metrics to understand the complex structure of networks. This
paper addresses the estimation of clustering coefficient in network
streams. There have been substantial work in this area, most
of conducting empirical comparisons of various algorithms. The
variance and the bias of the estimators have not been quantified.
Starting with a simple yet powerful streaming algorithm, we de-
rived the variance and bias for the estimator, and the estimators
for the variances and bias. More importantly, we simplify the
estimators so that it can be used in practice. The variance and
bias estimators are verified extensively on 49 real networks.

Index Terms—Estimation; Clustering Coefficient; Streaming
algorithms; Bias; Variance.

I. INTRODUCTION

The amount of data in digital world is growing faster than
before in the age of the Internet. This deluge of data results in
massive networks with the size of billions. Recently analyzing
such real-world networks has captivated a great attention
among practitioners and scholars. Clustering coefficient (here-
after C) is one of the most important metrics to analyze such
networks. It has been used in many applications including
graph clustering, community detection, spam detection, link
prediction, wireless and ad-hoc networks analysis, microarray
data and DNA sequence analysis, word-learning, risk analysis,
etc. Computing C on large networks is an intensive task, i.e. the
time complexity of the state-of-the-art method is Θ(N1.41),
here N is the number of nodes in the network [1]. Thus,
sampling-based algorithms are indispensable.

This paper focuses on the streaming algorithms where data
arrive sequentially in an arbitrary order. A number of tech-
niques have been proposed to estimate C in such a streaming
model [2]–[5]. The aim is to provide an accurate estimation
using limited memory budgets over single or multi passes of
the stream of edges of networks.

Despite extensive work in this area, there is a lack of formal
analyses of the algorithms, in particular the lack of estimators
for the variance and bias of the estimation algorithms. Most
algorithms are compared empirically, thus their performances
are often data dependent. Some algorithms do discuss the
bias and variance problems, but they all fail to give the exact
formulas. E.g., [2] [3] gives a variance that is generic for every
problem; [2]–[5] mentioned about the existence of the bias.

In addition to the bias and variance formulas, a more
important issue is their estimation without the global data.
In order to have the confidence interval for an estimate, we

need to know the variance and bias during the sampling and
estimation process, not the variance and bias that is derived
from the knowledge of the global data. I.e., we need to
estimate the variance and bias.

This paper derived the variance and bias so that algorithms
can be compared analytically. The formulas are along and
tedious, hard to be applied in practice. A more interesting
result of the paper is the simplification of the formulas so
that it can be applied easily. Based on the assumption that the
data is big, we show that the RSE (Relative standard error,
the normalized square root of variance) can be estimated by
the reciprocal of the square-root of the triangles observed in
samples. In other words, the accuracy grows at the rate of√

∆g , where ∆g is the observed sample closed wedges in the
streaming process.

The simplified result is especially important in the era of
big data. When networks are small, we can hardly predict
the behaviour of the sampling algorithms. However, when the
data is big, the performance can be characterized simply by
the closed wedges observed in the process. This result is also
supported by our extensive experiments on 49 real network of
different size and structure.

The second contribution is the correction of the bias of the
traditional estimator. This is an extension of the work from
direct sampling [6] to streaming algorithms. The existence of
the bias in streaming algorithms was also observed in [3], but
it is not quantified, thus not corrected. We proved that the bias
depends on the structure of the sample.

II. BACKGROUND AND RELATED WORK

A. Notations

Suppose G(V, E) be a simple undirected graph, where V is
the set of nodes, and E the set of edges. For simplicity, we
assume that the graph is not a multi-graph, and does not have
self-loops. Let N = |V|, M = |E|. Let 1, 2, . . . ,M be the
labels of the edges in E according to their occurrence order
in the stream. E.g. edge M is the last edge in the stream.
A wedge W is a path (u, v, w) of length two, where nodes
u, v, w ∈ V , and edges (u, v) ∈ E and (v, w) ∈ E . A wedge
W is closed if (u,w) ∈ E . Otherwise it is open. A closed
wedge W is also called a triangle. Note that each triangle has
three (closed) wedges. Let ∆ denote the number of closed
wedges and Λ the count of wedges in G.



Algorithm 1: Naive edge sampling (NES)
Input: p
Output: ∆̂, RSE(∆̂)

1 begin
2 ∆g = 0, Λg = 0, g = {φ}.
3 while new edge e do
4 Add e into g with probability p.
5 foreach wedge w formed using e and edges in g do
6 Λg+ = 1.
7 end
8 foreach wedge w ∈ g closed by e do
9 ∆g+ = 1.

10 end
11 end
12 Ĉ = 3∆g(pΛg)−1.
13 R̂SE(Ĉ)≈ ∆

−1/2
g .

14 end

B. Related work

A number of sampling-based methods have been proposed
in recent years to estimated clustering coefficient in networks.
A straightforward method is wedge sampling [7]. It selects
wedges uniformly at random and the fraction of closed ones
is used as an estimation for C. To sample a random wedge,
two passes over an edge stream are required in a streaming
model. Furthermore, one additional pass over edge stream is
needed to check the closeness of the random wedge [8] [9].
Therefore, sampling a random wedge from a large graph is
an intensive task. A scalable technique to estimate C is edge
sampling [2]–[4]. It samples some edges uniformly at random
and create a subgraph g. Then, the number of wedges and
closed ones in g are used to estimate C.

Estimating C using edge-based sampling methods is biased.
It is also noticed in [2] [3] [5]. Recently, authors in [6]
quantify the bias in none-streaming model when edges of
original graph are randomly accessible. However, to the best
of our knowledge, there is no study to quantify the bias in the
streaming model.

C. The Algorithm

In order to discuss the variance and bias problem rigorously,
we give a simple edge-based streaming algorithm (hereafter
we call it NES–Naive Edge Streaming) as described in Alg.
1. It is adapted from a direct sampling algorithm [6] to the
stream model. It is also a special case of [3] where all edges
are sampled with the same priority.

In NES, edges arrive in an arbitrary sequence over an edge
stream of the original graph G. Over the stream, NES samples
some edges uniformly at random with an equal probability
p, and adds them into the subgraph g. Once a new edge e
arrives, the number of wedges closed by e in g is counted.
Let ∆g denote the number of such closed wedges observed in
the stream. At the same time, the number of wedges formed
using e and edges in g is enumerated. Let Λg be the total
number of such wedges. Then, C is estimated using ∆g and

Λg . A key difference with [6] is that ∆g and Λg are counted
along the streaming process, not after the sampling.

Given a subgraph g of G, for every wedge (u, v, w) in g,
we check whether or not (u,w) is in the rest of the stream.
For every closed wedge in G, if its two edges are sampled in
g, the probability of observing the third edge in the rest of
the stream is 1

3 . Thus, the probability of identifying a closed
wedges by NES is 1

3p
2. Suppose δi be an indicator for the ith

closed wedge in G. Variable δi is 1 when two edges of the
ith closed wedge are sampled and the third edge is observed
in the rest of the stream; otherwise it is 0. Recall that ∆g

is the number of closed wedges identified by NES over a
single pass on an edge stream of G. The expectation of ∆g is
E(∆g) = E(

∑∆
i=1 δi) =

∑∆
i=1 E(δi) =

∑∆
i=1

1
3p

2 = 1
3p

2∆.
Thus, an unbiased estimator for ∆ is given by ∆̂ =

3∆g

p2 .
Similar estimators for ∆ have also been proposed in [10]–
[12].

Next, we give an unbiased estimator for the number of
wedges in G. To sample a wedge by NES, one of its two
edges needs to be added into g with probability p, and its
second edge is required to be observed in the rest of the
stream. Thus, the probability of identifying a wedge based
on g is p. Suppose λi be an indicator for the ith wedge
in the input graph. Clearly, λi is 1 when its two edges are
observed; otherwise it is 0. Recall that Λg is the number
of wedges identified based on g by NES. Its expectation is
E(Λg) = E(

∑Λ
i=1 λi) =

∑Λ
i=1 E(λi) =

∑Λ
i=1 p = pΛ. Thus,

an unbiased estimation for Λ is given by Λ̂ =
Λg

p .
Now we can use the unbiased estimators for ∆ and Λ to

estimate C. Although both ∆̂ and Λ̂ are unbiased, the following
estimator is biased as we will correct it later in this paper.

Ĉ =
∆̂

Λ̂
=

3p∆g

p2Λg
=

3∆g

pΛg
. (1)

III. ESTIMATOR OF THE VARIANCE

We derive the variance of the estimator using the Delta
method. Applying var on Eq. 1, we get

var(Ĉ) = var

(
3 ∆g

p Λg

)
=

9

p2
var

(
∆g

Λg

)
. (2)

Applying Taylor expansion in the neighbourhood of (a, b), we
have:

var

(
∆g

Λg

)
≈ 1

b2
var(∆g) +

a2

b4
var(Λg)− 2a

b3
cov(∆g,Λg).

Let a = E(∆g) and b = E(Λg), and using the fact that
E(∆g) = 1

3∆p2, and E(Λg) = Λp, we obtain the variance and
present it in the form of relative standard error (RSE=

√
var/C)

as follows:

RSE(Ĉ) ≈
[

9 var(∆g)

∆2p4
+
var(Λg)

Λ2p2
− 6 cov(∆g,Λg)

∆Λp3

]−1

.

The RSE depends on the variance of ∆g and Λg , and the
covariance between them. Note that this is where [2], [3] stops.
We continue the derivation of the variances and covariances



in Appendix. When the networks are large, p is a very small
value. Hence, we can assume that 1−p ≈ 1−p2 ≈ 1, and the
results of the Lemmas 1, 2, and 3 are simplified as follows:

var(∆g) ≈ 1

3
∆ p2 +

16

15
Φ p3, (3)

var(Λg) ≈ 2

3
Ψ p, (4)

cov(∆g,Λg) ≈ 5

12
Ω′ p2. (5)

Here Φ is the number of pairs of dependent triangles, Ψ is the
number of pairs of shared wedges, and Ω′ is the number of
pairs of wedges and triangles with one common edge in the
original graph G. Replace Eq.s 3, Eq. 4, and Eq. 5 in the RSE
above and after some math simplifications we obtain the RSE
as:

RSE(Ĉ) ≈
[

3

∆p2
+

48Φp3

5∆2p4
+

2Ψ p

3Λ2p2
− 5Ω′p2

2∆Λp3

]−1

. (6)

The RSE in Eq. 6 depends on the properties of the original
graph G, i.e. ∆, Λ, Φ, Ψ, and Ω′. Note that those properties
are unknown for the third party. However, practitioners need
to know the error bound of the estimator using the properties
in the sample. To do so, we give the estimation of the variance
as follows.

Based on NES sampling scheme we have E(∆g) = 1
3∆p2,

E(Λg) = Λp, E(Φg) = 8
15Φp3, E(Ψg) = 2

6Ψp, and E(Ω′g) =
5
12Ω′p2. Thus, substitute ∆, Λ, Φ, Ψ, and Ω′ in Eq. 6 by their
estimations, and after some math work we obtain the estimator
of the RSE as:

R̂SE(Ĉ) ≈
[

1

∆g
+

2Φg

∆2
g

+
2Ψg

Λ2
g

−
2Ω′g

∆gΛg

]−1

. (7)

where Φg is the number of pairs of dependent triangles, Ψg is
the number of pairs of shared wedges, and Ω′g is the number of
pairs of wedges and triangles with one common edge observed
based on subgraph g. The RSE in Eq. 7 hangs on several
variables in the sample, i.e. ∆g , Λg , Φg , Ψg , and Ω′g . To
have better understating the RSE of the estimator, we need
to simplify it further more. We claim that when sampling
probability p is small, the first term in Eq. 7, i.e. ∆−1

g , is
dominant. Therefore, we give the following Theorem as a
simplified estimator for the RSE of C.

Theorem 1. When p is small, the RSE of Ĉ is approximated
by

R̂SE(Ĉ) ≈ ∆−1/2
g . (8)

IV. THE BIAS-CORRECTED ESTIMATOR

To quantify the bias, we apply the expectation on Ĉ:

E
(
Ĉ
)

= E
(

3∆g

pΛg

)
=

3

p
E
(

∆g

Λg

)
. (9)

The approximation of E
(
∆g/Λg

)
using the quadratic Taylor

expansion of ∆g/Λg in the neighborhood of (a, b) is:

E
(

∆g

Λg

)
≈a
b

+
a

b3
var(Λg)− 1

b2
cov(∆g,Λg). (10)
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Fig. 1: The observed RSEs of Ĉ fit perfectly the estimated ones
in representative graphs. Estimated RSEs are obtained based
on Eq. 7.

Replace a = E
(
∆g

)
and b = E

(
Λg

)
and take E

(
∆g

)
=

∆p2/3 and E
(
Λg

)
= Λp; substitute Eq. 10 in Eq. 9, we obtain:

E
(
Ĉ
)
≈∆

Λ

(
1 +

var(Λg)

Λ2p2
− 3cov(∆g,Λg)

∆Λp3

)
. (11)

Note that C = ∆/Λ. Thus, we get:

E
(
Ĉ
)
≈C
(

1 +
var(Λg)

Λ2p2
− 3cov(∆g,Λg)

∆Λp3

)
. (12)

To quantify the bias of Ĉ, the relative bias, i.e. RB= (E
(
Ĉ
)
−

C)/C, is used. By substituting Eq. 12 in RB, and simplifying
the result we obtained:

RB ≈ var(Λg)

Λ2p2
− 3cov(∆g,Λg)

∆Λp3
. (13)

The bias depends on the variance of Λg and the covariance
between ∆g and Λg . Using the same treatment in the variance
of Ĉ for the var(Λg) and cov(∆g,Λg), i.e. Eq. 4 and Eq. 5,
and replacing them in Eq. 13 we have

RB ≈ 2Ψ p

3Λ2p2
− 5Ω′ p2

4∆Λp3
. (14)

Thus, we give our result in the following theorem.

Theorem 2. The RB of the estimator is approximated by

RB ≈ 1

p

[
2Ψ

3Λ2
− 5Ω′

4∆Λ

]
. (15)

and its estimation is

R̂B ≈ 2Ψg

Λ2
g

−
Ω′g

∆gΛg
. (16)

Using R̂B, a bias-corrected estimator of Ĉ is

Ĉ+ =
Ĉ

1 + R̂B
. (17)



TABLE I: Properties of the networks in our experiments, sorted by graph size N .

Network N(×106) M C ∆(×106) Λ(×109) Φ(×109) Ψ(×1012) Ω′(×1010) Description
Ego-facebook1 0.004 88,234 0.519 4.8 0.009 0.2 0.003 0.1 OSN

CA-GrQc 1 0.005 14,484 0.629 0.1 0.0002 0.002 0.00001 0.0009 Collaboration
Wiki-vote1 0.007 100,762 0.125 1.8 0.014 0.04 0.006 0.08 OSN
AstroPh 2 0.01 198,050 0.31 4.0 0.012 0.07 0.002 0.07 Citation

CA-CondMat1 0.02 93,439 0.264 0.5 2 0.002 0.0001 0.002 Coauthorship
HepPh 2 0.02 3,148,447 0.279 587 2 92 4 106 Coauthorship

Enron-email2 0.03 183,831 0.085 2 0.025 0.03 0.01 0.09 E-communication
Brightkite1 0.05 214,078 0.110 1.4 0.013 0.02 0.005 0.03 OSN
Facebook 2 0.06 817,035 0.147 10.5 0.07 0.1 0.02 0.2 OSN
Epinions 2 0.07 405,740 0.065 4.8 0.07 0.1 0.06 0.3 OSN

Slashdot-Zoo 2 0.07 467,731 0.023 1.6 0.06 0.02 0.05 0.09 OSN
Prosper 2 0.08 3,330,022 0.003 3.4 1.1 0.06 1 0.5 Interaction

Livemocha 2 0.1 2,193,083 0.014 10.0 0.716 0.1 0.8 1 OSN
Douban 2 0.1 327,162 0.01 0.1 0.011 0.0001 0.001 0.001 OSN
Gowalla 1 0.1 950,327 0.023 6.8 0.290 0.1 2 0.7 OSN

Libimseti 2 0.2 17,233,142 0.007 207 28 19 262 151 OSN
Digg 2 0.2 1,548,126 0.061 42 0.69 3 2 6 OSN

Web-Stanford 2 0.2 1,992,636 0.008 33 3.94 9 75 17 Web graph
Dblp-Coau1 0.3 1,049,866 0.306 6 0.021 0.1 0.001 0.06 Coauthorship

Web-NotreDame1 0.3 1,090,108 0.087 26 0.304 1.5 1 1 Web graph
Amazon1 0.3 925,872 0.205 2 0.009 0.003 0.0005 0.004 Co-purchasing

Actor 2 0.3 15,038,083 0.166 1,040 6.26 91 10 157 Collaboration
Citeseer2 0.3 1,736,145 0.049 4 0.081 0.01 0.02 0.06 Citation
Dogster 2 0.4 8,543,549 0.014 250 17 42 378 191 OSN
Catster 2 0.6 15,695,166 0.028 1,969 69 1,017 3,651 1,528 OSN

Web-Berkeley 2 0.6 6,649,470 0.0069 194 27.9 105 1,148 176 Web graph
Web-Google 2 0.8 4,322,051 0.055 40 0.727 0.6 1 1 Web graph

Youtube1 1.1 2,987,624 0.006 9 1 0.2 17 2 OSN
Dblp2 1.3 5,362,414 0.170 36 0.214 0.4 0.05 0.4 Coauthorship

Hyves 2 1.4 2,777,419 0.001 2 1.4 0.02 32 0.1 OSN
Wiki-Polish 2 1.5 42,188,631 0.01 3,402 308 697 62,290 3,466 Web graph
Trec-wt10g 2 1.6 6,679,248 0.014 63 4.3 11 50 13 Web graph

Wiki-Japanese 2 1.6 56,231,610 0.021 3,863 180 685 12,652 2,784 Web graph
Pokec 2 1.6 22,301,964 0.046 97 2.08 0.7 3 2 OSN

As-skitter1 1.6 11,095,298 0.005 86 16 20 291 48 Internet topology
Hudong 2 1.9 14,428,382 0.003 64 18.7 5 357 20 Web graph

Hollywood 3 1.9 24,337,642 0.152 614 4 27 2 37 OSN
Baidu 2 2.1 17,014,946 0.002 75 30.8 4 1,717 69 Web graph
Flicker2 2.3 22,838,276 0.107 2,512 23 613 120 1,079 OSN

Flixster 2 2.5 7,918,801 0.013 23 1.7 0.3 1 1 OSN
Wiki-Russian2 2.8 63,058,425 0.015 5,697 370 1,180 56,397 5,420 Web graph
Wiki-Franch 2 3.0 83,455,052 0.015 6,843 455 4,237 54,242 7,677 Web graph

Orkut2 3.0 117,185,083 0.041 1,882 45 67 320 347 OSN
USpatent 2 3.7 16,518,947 0.067 22 0.33 0.08 0.02 0.1 Citation

LiveJournal1 3.9 34,681,189 0.125 533 4 39 7 30 OSN
Web-Arabic3 22 553,903,073 0.031 110,686 3,531 112,260 986,071 91,940 Web graph

Twitter2 41 1,202,513,046 0.0008 104,474 123,435 176,266 154,818,391 956,719 OSN
MicrosoftAc.G.4 46 528,463,861 0.015 1,734 115 19 4,776 107 Citation

Friendster2 65 1,806,067,135 0.017 12,521 720 185 1,138 1,284 OSN
1 SNAP: [13] 2 Konect: [14] 3 [15], [16] 4 [17]

The bias-corrected estimator depends on the structure of
sampled graph g. Therefore, using a single pass over an edge
stream of the input graph we need to count ∆g , Λg , Ψg , and
Ω′g . Recall that Ψg is the number of pairs of shared wedges
and Ω′g is the number of pairs of wedges and triangles with
one common edge observed based on subgraph g. The authors
in [6] have shown that the cost of counting Ψg and Ω′g is the
same as counting Λg and ∆g . Note that the meaning of Ω′ is
different from the one in [6], i.e. Ω (the number of pairs of

wedges and closed ones with a common edge) and here it is
Ω′ = (Ω− 6∆)/2.

V. EXPERIMENTS

The code along with all the data are publicly available at
myweb.cs.uwindsor.ca/∼etemadir/cbiasstream. The observed
RSEs and RBs are obtained over k independent runs of
the algorithm, where k = 1000 except for the three largest
networks with k = 100 for RSE, and k=50,000 for RB.
Carrying out the experiments, including obtaining the ground
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Fig. 2: The estimated RSEs obtained based on Eq. 8 are apt estimations for the observed RSEs of Ĉ.
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Fig. 3: The observed RBs of Ĉ (biased estimator) support our
estimations of RB based on Eq. 16.

truth of the network properties, is computationally expensive.
The experiments were accomplished on two big servers each
with 24 cores and 256 GB RAM.

A. Datasets

Our analytical results show that the variance and bias hangs
on the structure of networks. Due to the fact that different
networks have different structures, the bias and variance vary
greatly from graph to graph. Furthermore, several approxima-
tions were made in the derivation of the theorems. To find

2e−03 4e−03 5e−03 7e−03 9e−03

−6

−4

−2

0

2

x 10
−3 Ego-facebook

O
b
s.

R
B

1e−02 2e−02 3e−02 4e−02 5e−02

−15

−10

−5

0

x 10
−3 CA-GrQc

2e−03 3e−03 4e−03 6e−03 7e−03

0

2

4

6

8

x 10
−3 Gowalla

O
b
s.

R
B

p
8e−04 2e−03 2e−03 3e−03 4e−03

0

5

10

x 10
−3 Web-NotreDame

p
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Fig. 4: Our biased-corrected Ĉ+ removes the bias perfectly.

out the patterns behind, we need to experiment extensively
with graphs from variety of domains with different sizes
and structures. We use 49 real network graphs in total. The
networks are from several domains including online social
networks (OSNs), web graph, co-authorship, citation, etc. The
network sizes range from 14 thousand to 2 billion edges. For
each network graph, self-loops were removed and directionally
was ignored in digraphs. The statistics of the graphs are listed
in Table I.
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Fig. 5: Comparison of sample sizes, i.e. number of sampled edges, of the methods when RSE=0.2. The sample size of NES
is comparable with GPS-In [3].

B. Verification of Theorem 1

To verify the approximations made in the derivation of the
RSE of the estimator in Theorem 1, the parameters of the
estimator were set up to obtain the RSEs between 0.1 and 0.4.
First, we report the observed RSEs along with its estimations
based on Eq. 7 in Fig. 1. Only 4 representative graphs are
reported for lack of space. Similar pattern are observed for
other graphs. We make several observations as follows.
• The estimated RSEs based on Eq. 7 fit perfectly the

observed RSEs not only for large graphs when p is small
but also for small ones. Take Ego-facbook, for example,
the smallest graph in our datasets, the observed RSEs (red
circles) fit very well our estimations based on Eq. 7.

• When p is small the first term in Eq. 7, i.e. 1/∆g ,
is a dominant term compared to the remaining three.
The reason is as follows. Firstly, when p is small, the
probability of identifying shared triangles, i.e. Φg , and
pairs of triangle and wedge with one common edge
(Ω′g) based on the sampled g is very small. Note that
E(Φg) = 8

15Φp3, and E(Ω′g) = 5
12Ω′p2. Moreover, the

term 2Ψg/Λ
2
g is ignorable due to the fact that their

expectations depends on the sampling probability p which
it is in the same order in the both expectations. Therefore,
in the sample Ψg << Λ2

g .
• By increasing sampling probability p, terms +2Φg/∆

2
g

and −2Ω′g/∆gΛg are increasing in the same order. Sur-
prising that the two terms neutralize each other. Further-
more, term 2Ψg/Λ

2
g remains ignorable compared to the

other terms.
The observations above support our claim in Theorem 1 to
simplify the RSE of the estimator. To verify the result in
Theorem 1, we report the observed RSEs and their estimations
based on Eq. 8 in Fig. 2. It can be seen that the observed
RSEs support our estimations not only for large graphs but
also for small ones. In a few small graphs, i.e. Web-Standford,
Web-Berkeley, and As-skitter, there are small gaps between
the observed and estimated RSEs. However, by increasing the
size of networks (see the last row in the figure) the estimated
RSEs match perfectly the observed ones. Thus, we believe that

our result in Theorem 1 can be used in practice to determine
the size of samples to achieve a given accuracy level of the
estimation.

C. The bias

To understand the bias, we set the parameters of the esti-
mator to achieve the RSEs between 0.1 and 0.4. The estimator
run on the graphs and the observed RBs (relative bias) and the
estimated ones based on Eq. 16 were computed. The results
were reported in Fig. 3 for the graphs with the RB more
than 0.7%. We make several observations as follows: 1) The
observed RBs support the estimated RBs based on Eq. 16 for
all graphs; 2) Both negative and positive biases are observed;
3) The largest RBs were observed on small graphs and it can
be as high as 2%; 4) In most of the graphs in our datasets,
the bias is very small and it is ignorable.

We also report the observed RBs of our biased estimator
and the bias-corrected one in Fig. 4. It can be seen that the
bias of Ĉ+ was removed in all the plots.

VI. DISCUSSIONS AND CONCLUSIONS

This paper addresses the estimation of the bias and variance
in a streaming algorithm for estimating clustering coefficient.
Essentially it is about estimating the properties of an estimator.
It is important since it is the only way to know how good an
estimate is during the estimation process.

Our result is obtained based on two simplifications. One
is the Taylor expansion–we take only the first two terms.
The other is 1 − p ≈ 1 − p2 ≈ 1, assuming that sampling
probability is very small if the data is very large. With such
simplifications, we can characterize the variance with a single
variable, i.e., ∆g . Although in theory variances depends on
graph structures characterized by Φ, Ψ, and Ω′, all these
variables can be neglected when estimations are performed
on very large graph. This simple yet powerful result is very
useful in practice– we can give a confidence interval when an
estimate is given.

For the bias part, we conclude that it is small overall, and it
is more observable for smaller graphs. Interestingly, the bias



can be either positive or negative, depending on the graph
structure.

Although our result is developed on NES algorithm, the
same method can be extended to numerous other streaming
algorithms. Besides, NES itself is a very powerful algorithm.
Despite its simplicity, its performance is comparable to the
state-of-the-art algorithm GPS-In as illustrated in Fig.5. Hence,
the variance estimator and NES are a good combination to be
used in practice.
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APPENDIX

Lemma 1. Let ∆g be the number of closed wedges identified
based on g using NES. The variance of ∆g is

var(∆g) =
1

3

(
∆(p2 − 1

3
p4) + 8Φ(

2

5
p3 − 1

3
p4)

)
. (18)

Proof. Applying the variance we have

var(∆g) = var(

∆∑
i=1

δi) =

∆∑
i=1

∆∑
j=1

cov(δi, δj)

=

∆∑
i=1

var(δi) +
∑
i 6=j

cov(δi, δj).

We remind the reader that indicator δi is 1 if ith closed wedge
is identified based on g; otherwise it is 0. The probability
of identifying a closed wedge by NES is 1

3p
2. Hence, the

variance of δi is 1
3p

2 − 1
9p

4. Therefore the cost of the
variance term is ∆( 1

3p
2 − 1

9p
4). The covariance between two

independent closed wedges is zero. Thus, we need to find the
covariance between dependent closed wedges. The probability
of identifying such a dependent case is 2

15p
3. Hence, the

covariance between two shared closed wedges in such cases
is 2

15p
3− 1

9p
4. Recall that the total number of pairs of shared

triangles is denoted by Φ. For each pair of shared triangles
there are four dependent closed wedges. Thus, in summation
above, there are 8Φ pairs of shared closed wedges. Therefore,
the cost of covariance term is 8Φ( 2

15p
3− 1

9p
4). Add the costs

of the two terms, we obtain the Lemma.

Lemma 2. Suppose Λg be the number of wedges identified
based on g using NES. The variance of Λg is obtained by

var(Λg) = Λ(p− p2) +
2

3
Ψ(p− p2). (19)

where Λ and Ψ are the number of wedges and the count of
pairs of shared wedges in G respectively.

Proof. Recall that λi is an indicator for ith wedge in G.
Indicator λi is 1 when ith wedge is identified based on g,
and 0 else. The variance of Λg is

var(Λg) = var(

Λ∑
i=1

λi) =

Λ∑
i=1

Λ∑
j=1

cov(λi, λj)

=

Λ∑
i=1

var(λi) +
∑
i6=j

cov(λi, λj).

The probability of identifying a wedge by NES is p. When
i = j holds, the covariance term is equal to the variance of
λi, which is p − p2. Thus, we get var(Λ̂) = Λ(p − p2) +∑
i6=j

cov(wi, wj). Next, we need to understand the covariance

between two wedges. When the two wedges wi and wj are



independent the covariance between them is zero. Hence, we
need to consider the covariance between dependent wedges.
The probability of identifying a pair of dependent wedges is
p. Thus, the covariance between two shared closed wedges
is (p − p2). Suppose Ψ be the number of pairs of dependent
wedges in G. The chance to identify such a dependent case is
1/3. Because cov(λi, λj) = cov(λj , λi) , we need to multiply
the covariance term by 2. Thus, the lemma is proved.

Lemma 3. Covariance between ∆g and Λg is given by

cov(∆g,Λg) = 2∆(p2 − p3) +
5

12
Ω′(p2 − p3). (20)

where Ω′ is the number of pairs of wedges and triangles with
one common edge.

Proof. Let indicators δi and λj be the same as defined before.
The covariance is given by

cov(∆g,Λg) =

∆∑
i=1

Λ∑
j=1

cov(δi, λj).

Suppose Ω′ be the exact number of pairs of wedges and
triangles with one common edge in G. The sampling proba-
bilities of such a pair is p2. Moreover, the chance to identify
such a pair in the streaming model by NES is 5/12. Therefore,
the total cost is 5

12Ω′(p2 − p3). In addition, for each closed
wedge of a triangle, there are two cases of pairs of wedges
and closed ones with a common edge. The total cost for such
cases is 6∆( 1

3p
2 + 1

3p
3). Therefore, we get the lemma.


