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ABSTRACT
The number of triangles in a graph is an important met-
ric for understanding the graph. It is also directly related to
the clustering coefficient of a graph, which is one of the most
important indicator for social networks. Counting the num-
ber of triangles is computationally expensive for very large
graphs. Hence, estimation is necessary for large graphs, par-
ticularly for graphs that are hidden behind searchable inter-
faces where the graphs in their entirety are not available.
For instance, user networks in Twitter and Facebook are
not available for third parties to explore their properties di-
rectly.

This paper proposes a new method to estimate the number
of triangles based on random edge sampling. It improves the
traditional random edge sampling by probing the edges that
have a higher probability of forming triangles. The method
outperforms the traditional method consistently, and can
be better by orders of magnitude when the graph is very
large. The result is demonstrated on 20 graphs, including
the largest graphs we can find. More importantly, we proved
the improvement ratio, and verified our result on all the
datasets. The analytical results are achieved by simplifying
the variances of the estimators based on the assumption that
the graph is very large. We believe that such big data as-
sumption can lead to interesting results not only in triangle
estimation, but also in other sampling problems.
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1. INTRODUCTION
Graphs are used to model interactions in many applica-

tions in online social networks, biology, biochemistry, and
many other domains. The count of triangles in such graphs
is an important structural property. For example, in on-
line social networks, it is used to measure with what prob-
ability friends of friends are also friends (clustering coeffi-
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cient [21, 28]). Counting triangles has also various appli-
cations such as spam detection [13] in computer networks,
community detection and blog analysis [7, 20, 29] in social
networks, protein identification [27], DNA sequence analy-
sis [6] in biology, study of systemic risk [24], tracking the
evolution of international trade [11] in economy, and more.

Enumerating triangles in massive graphs is not practi-
cal because the best-known algorithm has a time complex-
ity of O(M3/2), where M is the number of edges [8, 14].
Thus, approximate algorithms are indispensable. Substan-
tial work has been done on the streaming model where data
items arrive sequentially and there is a limited memory win-
dow [1, 5, 9, 10, 16, 23]. Many streaming algorithms are de-
signed specially to tackle such sampling restrictions. This
paper focuses on a more generic sampling scheme without
the streaming restriction. In addition for estimating trian-
gles in large graphs, the method can also be applied in the
scenario when a graph in its entirety is not available. For
instance, many large networks, such as Twitter and Face-
book user networks, are hidden behind searchable interfaces.
Their properties can only be estimated by taking a sample
from them.

When estimating the number of triangles, the most natu-
ral, and a naive one, is to take triples (three nodes) uniformly
at random, then check whether they form triangles [2]. Un-
fortunately, this method is too costly to be of practical use.
Most graphs, especially the large ones, are sparse. Hence,
the vast majority of the triples have zero to two edges. It
means that the cost of observing even one triangle in this
method will be exorbitantly high. Buriol et al. ameliorate
this problem by skipping the cases for zero edges [5]. They
proposed to start with one random edge, then check whether
there are triangles surrounding this edge. This method can
be interpreted as starting with three random nodes, with
the pre-condition that there needs to be at least one edge
already in the triple.

When a random edge is given, there are numerous vari-
ations to check whether there is a containing triangle. Bu-
riol et al. take a random node from the remaining set [5];
Tsourakakis et al. continue to select more random edges,
in the hope to obtain a triangle [25]. The method proposed
in [25] can be regarded as a random edge method: it selects
random edges, forms a subgraph from the random edges.
Then the count of the triangles in the subgraph is used to
estimate the number of triangles in the original graph.

Both methods in [5] and [25] still suffer from the scarcity
of triangles in the subgraph. In [5], although it skips the
triples with zero edges, it could be better to skip triples
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with one edge only, by starting with the triples that have at
least two edges. For [25], triangle count in the subgraph can
increase if we check their edges not only in the subgraph,
but also in the original graph.

Motivated by these observations, this paper presents a
new sampling method that combines the ideas from both [25]
and [5]. The first step is the random edge sampling that is
the same as that in [25]. Then, for every path of length two
in the subgraph, we check the existence of the third edge in
the original graph.

In this paper, we give the unbiased estimator and its
variance for our sampling method. The variance is a long
formula that involves several parameters, thereby it does
not provide useful insight into the estimator, nor can it be
compared with other sampling methods. Hence, we sim-
plify the formula based on the assumption that the graph is
very large. The simplified RSE (relative standard error) is

1/
√

3∆|g, where ∆|g is the number of triangles restricted to
the subgraph g. Intuitively, from the formula we can infer
the 95% confidence interval by looking at the triangles in
the subgraph.

After doing the similar treatment for the random edge
method, we can compare the performance of these two esti-
mators analytically. The analytical study demonstrates that
our method is always better than the other method. This is
confirmed by empirical experiments on 20 graphs, including
the largest networks we can find.

Our contribution is twofold, in both the result and the
method. For the result, we present a new estimator that
outperforms the random edge method by orders of magni-
tude; For the method, we use the big data assumption to
simplify the variances of various estimators. Thereby, per-
formances of different triangle estimators can be compared
analytically for the first time.

In presenting our theorems, we do not use the ε − δ ap-
proximation notation as most other papers do, as it is self-
evident from Chebyshev’s inequality. What is more, Cheby-
shev’s inequality is valid for any data distribution, hence
it gives a loose range that has little practical implication.
Estimates produced by multiple runs follow a normal distri-
bution. This is implied by the central limit theorem and is
verified by our experiments. The central limit theorem can
be applied in this case because each estimation involves the
summation (mean) of probabilities for all the triangles being
sampled. With such normal distribution, we have a much
tighter confidence interval, i.e., 95% confidence interval is
within two standard deviations. Hence, in the remaining
part of the paper only RSE and variance are discussed. We
summarize a list of notations which are used in the rest of
this paper in Table 1.

2. METHODS

2.1 Motivation
Given an undirected graph G(V, E), where V is the set of

nodes, and E the set of edges. The graph is not a multi-graph
and does not have self-loops. Let N = |V|, M = |E|, and ∆
denote the number of triangles in G. A wedge W is a path
u−v−w of length two, where u, v, w ∈ V, u 6= w, (u, v) ∈ E ,
and (v, w) ∈ E . A wedgeW is closed if (u,w) ∈ E . Otherwise
it is open. Note that each triangle has three (closed) wedges.

Given a subgraph g of G, we use ∆g to denote the number
of triangles in g, and ∆|g the number of triangles restricted

Table 1: Summary of the notations.

Notation Meaning

G(V, E) Original graph
N,M Number of nodes and edges in G
n Sample size
〈d〉 Average degree
∆ Number of triangles in G
K Number of triangle pairs that share an edge
g A subgraph of G
∆g Number of triangles in g
∆|g Number of triangles restricted in g
Eg Random edge sampling method
EG Our method that checks wedge closure in G

∆̂Eg The unbiased estimator for Eg

∆̂EG Our unbiased estimator

to the wedges in g, i.e., for every wedge u − v − w in g, we
check whether (u,w) ∈ E . More formally,

∆|g =
1

3
|{(u, v, w)| (u, v), (v, w) ∈ g, (u,w) ∈ G}|.

To estimate ∆, a straightforward algorithm is the random
edge sampling proposed by Tsourakakis et al. [26], which is
called DOULION in [25], and called Eg in this paper because
it depends on the triangles in the sample graph g. The
process is as follows: it selects random edges with an equal
probability p to generate a subgraph g. Then, the count
of triangles in g is used to approximate ∆ in G with the
estimator

∆̂Eg =
∆g

p3
. (1)

A major drawback of the method is the scarcity of tri-
angles in the sample graph. We can verify this by looking
at the formula for the expected number of triangles in the
sample graph g, which is

E(∆g) = ∆p3. (2)

Because of the cubic function for a small p, we can barely
see triangles in a sample graph. This problem is more acute
when the graph is very large, henceforth the sampling prob-
ability is very small. In our subsequent experiments, ∆ can
be in the order of 1010, and p is in the order of 10−5. In this
scenario, it is obvious that it is far from observing any trian-
gles in g, let alone enough number of triangles to guarantee
the accuracy of estimation. It is necessary to devise a new
sampling method that can increase the expected number of
triangles in the sample.

2.2 Our method
The main idea of our method is to sample edges that

have a higher probability of forming triangles. In social net-
works and other information networks, it is established that
a friend of a friend has a higher probability of being friends
as well [7, 28]. Thus, it would be beneficial to sample the
edges for open wedges in a partially sampled graph. Follow-
ing this rationale, our method divides the sampling into two
steps. The first step is the same as a normal random edge
sampling [25]: we take random edges with equal probability
p. In the second step, in addition to counting the triangles
in g, we also look at the open wedges in g, and check the



closeness of these open wedges in the original graph. Since
the sampling method is changed, the estimator is no longer
the one in the Eg method. Instead, we give the estimator
for EG as

∆̂EG =
∆|g
p2

, (3)

which will be proved in the next section. Intuitively, we
count the number of triangles that are restricted to g, then
multiply it by a factor of 1/p2. Compared with the Eg

method, the number of observed triangles can be larger by
a factor of 1/p under similar sampling cost.

Example 1. Figure 1 illustrates our sampling method.
In this graph G, the number of triangles ∆ = 3. Suppose
that the sampling probability p = 0.5, and six distinct edges
are selected, resulting in a subgraph g depicted in Panel (B).
There is one triangle in g. Hence the estimate using the
random edge method Eg is

∆̂Eg =
∆g

p3
=

1

0.53
= 8. (4)

In our EG sampling, the first step is the same as Eg, i.e., six
edges are selected with an equal probability p = 0.5. Then,
there is an additional step to check the closeness of every
open wedge. In the example, two wedges 3−2−1 and 4−1−2
are checked, and it is found that wedge 3−2−1 is closed. Re-
call that there is already one triangle in the subgraph, which
is equivalent to three closed wedges. Hence, all together there
are four closed wedges, or ∆|g = 4/3. Note that in our sam-
pling method, ∆|g does not have to be an integer because it
is 1/3 of the closed wedges observed. The sampling cost is 8
because it checked 8 edges in total. The estimate is

∆̂EG =
∆|g
p2

=
4/3

0.52
=

16

3
. (5)

Our method applies extra checks in return for more tri-
angles. One question is whether these additional triangles
are worth the checking cost. Intuitively, the checking cost
is proportional to C (clustering coefficient), which measures
the probability of seeing a triangle for an open wedge. If
w is the number of open wedges in g, we need to conduct
closeness check w times. There will be on average w × C
number of additional triangles. In other words, 1 − C frac-
tion of the checks are wasted. Note that for most networks,
C is well above 0.01. On the other hand, the vast major-
ity of the edges do not form triangles, especially when the
graph is very large and the sample size is small. In those
large graphs in our experiments, we need sample edges in
the order of 105 to form one triangle. Compared with this
small success ratio, the cost of extra closure check is neg-
ligible. This argument is corroborated by our experiments
depicted in Fig. 5.

In the following, we derive the variance of this estimator,
and compare it with that of Eg.

2.3 Variance of EG

Let wi be an indicator for the ith closed wedge in the
input graph G. The indicator wi is 1 when two edges in the
ith closed wedge are sampled, otherwise it is 0. Since each
triangle has three wedges, there are 3∆ closed wedges. We
label them from 1 to 3∆. The number of triangles restricted

to g is

∆|g =
1

3

3∆∑
i=1

wi. (6)

For each wedge, the probability it is being sampled is p2.
The expected number of closed wedges inG that are sampled
in g is:

3E(∆|g) = E(

3∆∑
i=1

wi) =

3∆∑
i=1

E(wi) =

3∆∑
i=1

p2 = 3p2∆.

Therefore, the unbiased estimator for EG sampling is

∆̂EG =
∆|g
p2

. (7)

What is more important is the variance of the estima-
tor. The variance is more complicated due to the covariance
between wedges. Applying var on the estimator, and ex-
panding ∆|g using Equation 6, we have

var(∆̂EG) = var

(
∆|g
p2

)
= var

(
1

3

3∆∑
i=1

1

p2
wi

)

=
1

9p4

3∆∑
i=1

3∆∑
j=1

cov(wi, wj)

=
1

9p4

 3∆∑
i=1

var(wi) +
∑
i 6=j

cov(wi, wj)

 . (8)

Random variable wi follows a binomial distribution, whose
variance is p2(1 − p2). The covariance of two independent
variables wi and wj is zero. When wi and wj are dependent,
they share one edge in common. When this happens, there
are four cases as depicted in Figure 2. Their covariance
is cov(wi, wj) = E(wiwj) − E(wi)E(wj) = p3 − p4. Let
K denote the total number of pairs of triangles that share
one edge in G. Considering that for each cov(wi, wj) there
is an equal cov(wj , wi),

∑
i 6=j cov(wi, wj) = 8K(p3 − p4).

Therefore, we derive the following lemma:

Lemma 1. The variance of ∆̂EG is

var(∆̂EG) =
1

9p4

(
3∆(p2 − p4) + 8K(p3 − p4)

)
. (9)

This result provides limited insight into the accuracy of
estimator, because it is complex and depends on a few pa-
rameters including p,K, and ∆. We can transform it into
relative standard error RSE =

√
var/∆ as follows:

RSE(∆̂EG) =

[
1

3∆|g

(
1− p2 +

8K

3∆
(p− p2)

)] 1
2

. (10)

When the sample size is small, i.e., when p is small, we can
see that the first term in Equation 10 plays a dominant role.
Hence, RSE of the estimator can be approximated by the
following

Theorem 1. When the sample size is small, RSE of the
EG estimator can be approximated by

RSE(∆̂EG) ≈ 1√
3∆|g

. (11)
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Figure 1: Illustration of Eg and EG sampling.
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Figure 2: Dependent wedges of two shared triangles.

This result is useful for the comparison with the Eg method
that will be discussed in the next section. In addition to
that, it gives us a practical guidance for conducting estima-
tions. For example, if we want to have an estimation with
95% confidence interval of ∆±0.1×∆, then we need to have
an RSE that is approximately 0.1/1.96 ≈ 0.05. According
to Equation 11, the number of triangles we need to see is

∆|g =
1

3×RSE2
=

1

3× 0.052
= 133.

2.4 Variance of Eg

Although [25] gave the variance for the Eg estimator, it is
a long formula that buries intuitive interpretations. Similar
to our previous treatment for the EG estimator, we trans-
form the variance to RSE and simplified it into the following
theorem:

Theorem 2. When the sample size is small, RSE of the
Eg estimator can be approximated by

RSE(∆̂Eg ) ≈ 1√
∆g

. (12)

Proof. See Appendix A.

Next, we want to compare these two methods. One would
be tempted to compare their RSE ratio given a fixed sam-
pling percentage. This approach turns out not ideal because
given a fixed sampling probability, p is small for Eg could
be already a very large one for EG. Therefore it violates our
small sample assumption.

Hence, we compare their sample size to achieve the same
RSE. Comparing Equations 11 and 12, we obtained the per-
formance ratio between the two methods:

Corollary 1. Let nEg and nEG
be the number of sample

edges of Eg and EG respectively for achieving the same RSE

in the two methods. A relation between nEg and nEG
is:

nEg

nEG

≈
[

3M

nEg

] 1
2

. (13)

Proof. See Appendix B.

Recall that M is the number of edges in G, which is al-
ways larger than sample size nEG . Therefore, Eg always
needs more samples to achieve the same accuracy. When
the sample size becomes bigger and approaches the total
data size, the difference diminishes.

3. EXPERIMENTS
Our analytical results are derived with approximations

based on the assumption on the data size and sample size.
The experiments are designed to confirm the validity of the
analytical results, and empirically demonstrate how much
better our method is. In particular, analytical results do
not include the cost of additional closeness check. These ex-
periments confirm that such cost does not affect the overall
performance of our method.

3.1 Datasets
We use 20 real world graphs to evaluate the algorithms,

whose statistics are summarized in Table 2. We removed
repeated edges and self-loops, and ignored the edge direc-
tionality in directed networks. Therefore, some statistics
may be different from other papers working on the same
datasets. For example, we found that the Twitter data con-
tains 18% repeated edges. Such repeated edges have to be
removed to guarantee the accuracy of the sampling.

We include almost all the largest graphs that we can find.
Examples are the most recent academic citation graph re-
leased by Microsoft, which contains 46 million nodes, and
the well-known Twitter user network that has 41 million
nodes. In addition to these large graphs, we also include
some smaller graphs of various scales for comparison pur-
pose. The types of the graphs are also diversified, covering
various areas. There are web graphs, online social networks,
citation graphs, co-author and co-purchasing relations etc.

The experiments are conducted on two servers, each has
256 GB memory and 24 cores. The data and code are avail-
able on the website http://etemadir.myweb.cs.uwindsor.ca/
cikm2016/triangles.php.

3.2 Experimental setup
We verify Theorems 1 and 2 by comparing observed RSEs

obtained from running the estimators on the datasets and

http://etemadir.myweb.cs.uwindsor.ca/cikm2016/triangles.php
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Table 2: Properties of the networks in our experiments, sorted by graph size N .

Data Set N 〈d〉 C ∆(×106) K (×106) R(K/∆) Description
Ego-facebook [15] 4,039 43.69 0.519 1.6 228 141.92 Online social network (OSN) in Facebook
Enron-email [12] 36,692 10.02 0.085 0.7 36 50.24 Email communication network in Enron

Brightkite [15] 58,228 7.35 0.110 0.49 29 59.14 OSN in Brightkite
Dblp-Coau [15] 317,080 6.62 0.306 2.2 105 47.22 Co-authorship network in DBLP

Web-NotreDame [15] 325,729 6.69 0.087 8.9 1,552 174.23 Web graph of Notre Dame
Amazon [15] 334,863 5.53 0.205 0.6 3 5.29 Co-purchasing network from Amazon
Citeseer [12] 384,413 9.03 0.049 1.3 15 11.63 Citation network in Citeseer
Dogster [12] 426,820 40.03 0.014 83 42,069 503.82 OSN from dogster.com website

Web-Google [12] 875,713 9.87 0.055 13 621 46.38 Web graph from Google
Youtube [15] 1,134,890 5.27 0.006 3 251 82.37 OSN in Youtube

Dblp [12] 1,314,050 8.16 0.170 12 436 35.84 Co-authorship network in DBLP
As-skitter [15] 1,696,415 13.08 0.005 28 20,522 713.34 Internet connections from Skitter project

Flicker [12] 2,302,925 19.83 0.107 837 613,838 732.85 Online social network in Flicker
Orkut [12] 3,072,441 76.28 0.041 627 67,098 106.91 Online social network in Orkut

LiveJournal [15] 3,997,962 17.35 0.125 177 39,492 222.09 OSN in LiveJournal
Orkut2 [3, 4] 11,514,053 56.80 0.0002 223 34,671 155.38 OSN in Orkut

Web-Arabic [3, 4] 22,743,881 48.70 0.031 36,895 112,260,907 3,042.68 Web graph from Arabian countries
Twitter [12] 41,652,230 57.74 0.0008 34,825 176,266,104 5,061.49 OSN from Twitter

MicrosoftAc.G. [19] 46,742,304 22.61 0.015 578 19,589 33.88 Citation network from Microsoft Academic
Friendster [12] 65,608,366 55.06 0.017 4,173 185,191 44.37 OSN of website Friendster
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Figure 3: The observed and estimated RSEs of estimator EG. Estimated values are obtained from Equation 11.



expected RSEs derived from Equations 11 and 12. To obtain
observed RSEs, we repeated the estimation k times using the
same sample size, each time obtaining an estimate ∆i. Let
µ = 1

k

∑k
i=1 ∆i. The observed RSE is calculated using

RSE =
1

∆

√
1

k

∑
(∆i − µ)2. (14)

In our experiments, k = 1000 for all graphs.
For the sample size parameter, most existing methods,

such as DOULION [25], use a fixed range of sampling prob-
ability p or percentages of the edges sampled for all graphs.
Fixed percentage creates a wide variation for RSEs: one per-
cent of sample data may not be enough to have an accurate
estimate for small graphs, but can achieve very good (small)
RSE for large graphs. Instead of fixed percentage, we target
at a fixed range of RSEs, and choose the sample size that
can create the RSEs at the desired range. RSE can reflect
the confidence interval of the estimates, which is the main
concern of any estimator.

All the experiments target RSEs between the range of 0.05
and 0.4. Note that this setting translates to 95% confidence
intervals between ∆±0.1∆ and ∆±0.8∆. Next, we need to
select sample size n so that the observed RSE would be in
that range. Recall that, from Equations 11 and 12, we can
derive ∆g and ∆|g from desired RSEs. However, we still do
not know what is the sample size n to obtain that number
of triangles. To solve this problem, we derived the following
theorem to decide the sample size for EG.

Theorem 3. In EG sampling, the relationship between
nEG

and ∆|g is

nEG
≈
[

3N∆|g
2CΓ

] 1
2

, (15)

where C is the clustering coefficient, and Γ = δ2 + 1, where
δ is the coefficient of degree variation.

Proof. See Appendix C.

We want to emphasize that we do not need to know those
parameters such as C, Γ, N to estimate the number of tri-
angles. Equation 15 is used only in our experiment to select
the sample size so that we know the results are within a cer-
tain RSE range. The triangle estimation itself only needs to
know the sampling percentage and ∆|g.

Under certain circumstances, such as in sampling hidden
data sources, the sampling percentage p is not known since
it cannot be derived from nEG

. We do know nEG
, but p =

nEG
/M depends on M , the number of edges in the graph.

Note that M = N × 〈d〉. Both number of nodes N and
average degree 〈d〉 can be estimated effectively using random
edge sampling. We refer to [17] for the estimation of N ,
and [18] for the estimation of average degree.

3.3 Verification of Theorems
Due to the approximations made in our derivations, we

need to investigate the impacts of those approximations for
different datasets.
Theorem 1. The observed RSEs and the projected RSEs

are plotted in Figure 3 for the EG method. We can make
several observations:

• For all the graphs, Equation 11 is a good approxima-
tion for the real RSE observed. The approximation is

lower than the actual value, because we omitted the
remaining terms in Equation 10;

• the approximation is more accurate when the data is
large. Recall that the datasets are sorted in increasing
order of data size;

• among the large graphs, Twitter and Web-Arabic demon-
strate large deviation than other large graphs. A closer
check reveals that they both have very large K’s, and
large ratios between K and ∆. According to Equation
10, the ratio K/∆ in the third term plays a key role
on the impact of the approximation. Note that K can
be even larger than ∆, because it is the number of
combinations of triangles that share a common edge.

Theorem 2. Figure 4 shows the observed RSEs vs the
approximated values derived from Theorem 2. Overall the
approximation fits better with the real data than the EG

method. This is expected because the major term we omit-
ted in Equation 12 is smaller. It is

2K

∆
p2, (16)

while the term omitted in Equation 11 is

8K

3∆
p. (17)

Corollary 1. Figure 5 demonstrates the major result of
this paper: to what extent our method improves the ran-
dom edge sampling method. In the experiment, we include
the cost for checking wedge closures. Overall, our projected
improvement ratio fits well with the observed data. Again,
in large graphs the projection fits better with the real data.

Two additional observations are:

• The advantage of our method grows with the RSE
(or decreases with the desired accuracy level). Our
method is good when the sample size is small. When
a large portion of the data is sampled, our method
may not be as good as the random edge method. Re-
call that in all the derivations, we assume that the
sampling probability p is small. Despite such assump-
tion, our method is consistently better than Eg in all
datasets. RSE ranges from 0.05 to 0.4. 0.05 is a rea-
sonable RSE from which we can obtain 95% confidence
interval between ∆± 0.1×∆.

• The improvement grows with data size. When RSE=
0.05, it improves by a factor of four for Facebook, and
a factor of 30 for Twitter. Figure 6 plots the improve-
ment as a function of data size. It can be seen that
the sample size ratio is correlated positively with the
data size. The Pearson correlation coefficient is 0.94
for edge size, and 0.99 for triangle size, when both the
data size and the improvement ratio are in logarithmic
scale. The unlogged correlation coefficient is 0.75 for
edge size and 0.82 for triangle size. We can see that
the improvement correlates with ∆ more strongly than
M . This demonstrates that our method is especially
good for large graphs with a large number of triangles.



     2e−02 4e−02 6e−02

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ego-facebook
R
S
E

     2e−02 5e−02 7e−02

Enron-email

     3e−02 6e−02 8e−02

Brightkite

     2e−02 3e−02 5e−02

Dblp-Coau

     2e−02 5e−02 7e−02

Amazon

Est.

Obs.

     1e−02 2e−02 3e−02

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Web-NotreDame

R
S
E

     2e−02 4e−02 6e−02

Citeseer

     5e−03 1e−02 2e−02

Dogster

     9e−03 2e−02 3e−02

Web-Google

     2e−02 3e−02 5e−02

Youtube

Est.

Obs.

     1e−02 2e−02 3e−02

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Dblp

R
S
E

     7e−03 1e−02 2e−02

As-skitter

     2e−03 5e−03 7e−03

FLicker

     4e−03 8e−03 1e−02

LiveJournal

     3e−03 5e−03 8e−03

Orkut

Est.

Obs.

     4e−03 7e−03 1e−02

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Orkut2

R
S
E

p
Eg

     7e−04 1e−03 2e−03

Web-Arabic

p
Eg

     7e−04 1e−03 2e−03

Twitter

p
Eg

     3e−03 5e−03 8e−03

MicrosoftAG

p
Eg

     1e−03 3e−03 4e−03

p
Eg

Friendster

Est.

Obs.

Figure 4: The observed and estimated RSEs of estimator Eg. Estimated values are based on Equation 12.

4. RELATED WORK
The first sampling based algorithm is proposed by Bar-

Yossef et al in 2002 [2]. In one of their methods called the
naive method, three random nodes are selected to form a
triplet, and it is checked whether it is a triangle or not. The
fraction of sampled triangles among selected triplets is used
to estimate the counts of triangles in an input graph. The
drawback of this method is that it is not easy to obtain
a random triangle in sparse graphs. This method has been
improved by decreasing the sample space from (N3 ) toM(N−
2) [5]. The idea is constructing a sampled triplet with a
random edge e and nodes from remaining ones.

In [23], Pavan et al introduced neighborhood sampling.
This method first selects an edge uniformly at random. Then,
one of its neighboring edges is sampled proportional to the
degrees of its end nodes. A random wedge is created by two
sampled edges.Then the method checks whether the wedge
is closed or not.

Edge sampling is proposed by Tsourakakis et al in [25].
In this approach, edges are sampled uniformly at random,
and the sampled edges form a subgraph. The count of tri-
angles in the subgraph is used to estimate ∆. In [25], the
authors proved that the estimator is unbiased, and derived
its variance.

To generate subgraph g a different sampling method called
triangle coloring is proposed in [22]. First, it colors nodes
of an input graph uniformly at random with N number of
colors where N = 1

p
and p is a sampling probability. Then,

each edge with the same color for its end-nodes is selected to
generate g. This approach needs to record a label for each
node of an input graph, and to scan all edges of the input
graph. In [1], g is generated by selecting random edges with
different probabilities. This means that if an edge closes
a wedge in g it is selected unconditionally, and if it is ad-
jacent to sampled edges so far, its sampling probability is
q, otherwise it is p. In this method finding an appropriate
value for q is challenging since it depends on the input graph.

5. DISCUSSIONS AND CONCLUSIONS
This paper proposes a triangle estimation method that

outperforms the previous one by a factor of up to 30 when
RSE is 0.05. The improvement can be higher when RSE is
bigger, or the required accuracy is reduced. We proved that
the estimator is unbiased, and derived its variance. The vari-
ance in the original form lacks intuitive interpretation due
to the long formula and multiple variables involved. Based
on the big graph (henceforth small sample) assumption, we

simplified the RSE to (3∆|g)−1/2. Such simplified result
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gives us practical guidance in sampling. We can derive the
confidence interval by looking at the triangles observed in
the sample, hence we can decide when to stop the sampling.
Although several assumptions are made for our conclusions,
we empirically show that our approximation is still very close
to the real RSEs observed.

The simplified formula also allows us to compare our method
with other methods analytically. In the past, performances
for different methods, including various streaming algorithms
for triangle counting, are compared empirically. Those re-
sults may vary from data to data. Our work is the first to
study the performance ratio analytically.

Our method is particularly suitable for very large graphs.
It reduces the sample size by orders of magnitude for large
graphs. We show that the performance improvement posi-
tively correlates with data size. When ∆ and improvement
ratio are logged, their Pearson correlation coefficient is as
high as 0.99, almost a linear function for all 20 datasets.

The method is motivated by the scarcity of triangles in
sampled graph when the original graph is very large. We
can increase the probability of observing more triangles by
checking the wedges in the sample graph. This strategy
works very well for several reasons: First, most networks
tend to cluster together, as friend’s of friend’s have a ten-
dency to be friends as well. Thus, when checking the close-
ness of a wedge, it has a high probability that the wedge is
closed; Secondly, checking the closeness of a wedge is more
efficient than throwing a random edge in identifying a tri-
angle. Throwing a random edge in a very large graph may
well end up with an isolated edge, not even connecting with
any other edge, let alone forming a triangle. On the other
hand, checking the closeness of a wedge works at least in the
vicinity of two connected edges. Its chance is higher to form
a triangle when the sample size is small.
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APPENDIX
A. PROOF OF THEOREM 2

Based on the variance of Eg [25], its RSE is as follows:

RSE(∆̂Eg ) =

[
1

∆p3
(1− p3 +

2K

∆
(p2 − p3))

] 1
2

=

[
1

∆g
(1− p3 +

2K

∆
(p2 − p3))

] 1
2

. (18)

When the sampling probability p is small, the terms −p3 +
2K
∆

(p2 − p3) is ignorable. Thus, the RSE of Eg is estimated

by 1/
√

∆g.

B. PROOF OF COROLLARY 1
Proof. Let pEg

and pEG
be sampling probabilities of

Eg and EG, respectively. We aim at getting the same RSE
for both methods. Therefore, for small sample sizes the
following equation holds

RSE(∆̂Eg ) = RSE(∆̂EG)

1√
∆g

=
1√

3∆|g
∆g = 3∆|g. (19)

Since ∆g = ∆p3
Eg

and ∆|g = ∆p2
EG

, we get

∆p3
Eg

= 3∆p2
EG

p3
Eg

= 3p2
EG
. (20)

By substituting pEg
=

n
Eg

M
and pEG

=
n
EG
M

, in Equation

20, the Corollary is proved.

C. PROOF OF THEOREM 3

Proof. Based on the estimator N̂ for graph node size
N [17], we obtain the relation between N and the sample
subgraph g as follows

N =
1

wg

(
n

2

)
Γ. (21)

Here, n = 2 × nEg
is the total number of times the nodes

have been sampled. It is the sum of all the degrees of the
sample graph g, or number of edges times two. Variable wg

is the number of collisions in [17], which can be interpreted
as the number of wedges in g. After rearranging the above
formula, we have:

n2 − n =
2Nwg

Γ
. (22)

Recall that wg = 3∆|g/C, and approximate n − 1 with n,
we get

n ≈
[

6N∆|g
CΓ

] 1
2

. (23)

The approximation n ≈ n−1 can be applied because n is in
the order of

√
N so that collisions (wedges) can be observed

in the sample graph. When N is large, say in the order of
106, n is in the order of 103. Substituting n with 2 × nEG

,
we have:

nEG
≈
[

3N∆|g
2CΓ

] 1
2

. (24)
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